
J
H
E
P
0
1
(
2
0
0
7
)
0
8
0

Published by Institute of Physics Publishing for SISSA

Received: April 1, 2006

Revised: December 23, 2006

Accepted: December 28, 2006

Published: January 22, 2007

Computation of confidence levels for search

experiments with fractional event counting and the

treatment of systematic errors

Peter Bock

Physikalisches Institut der Universität Heidelberg,

Philosophenweg 12, D69120 Heidelberg, Germany

E-mail: peter.bock@physi.uni-heidelberg.de

Abstract: A method is described which computes, from an observed sample of events,

upper limits for the production rate of new particles, or, for the case of an observed excess of

events over background, the probability for an upward fluctuation of the background. It is

based on weighted event counting depending on a discriminating variable. Candidates may

be produced in different reaction channels with different detection efficiencies and different

background. Systematic errors with arbitrary correlations are taken into account in the

confidence level calculations. In addition, they are are incorporated in the weight definition.

Conditions under which the Bayesian and the frequentist treatment of systematic errors give

identical results are derived. It is shown that the significance of an observation of a signal

is generally overestimated in low statistics experiments. Simple approximate formulae for

observed and expected confidence levels are given for the limiting case of high count rates.

A special statistical test of a given signal-to-background-ratio using the distributions of the

discriminating variable and fixing the total theoretical intensity to the observed number of

events, is described.
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1. Introduction

The analysis of particle search experiments and the interpretation of the results can be

quite complex. In many cases several physical channels with different systematic errors

and even different experiments have to be combined. Sophisticated and efficient event

taggers have been developed to detect specific event topologies. If an excess over the

expected background is observed in the data, an immediate question is to what extent an

upward fluctuation of the background can be ruled out. These issues have been discussed

by a variety of authors (see the summaries given in refs. [1] to [5], and refs. [6] to [8]).

In this paper the method of fractional event counting is described which uses, as the

indicator for a signal, a weighted sum over the observed events. The weights, also called

the filter function, are computed from physical variables of the candidates. The method

was originally applied in Higgs search experiments (refs. [9] to [11]) but was only briefly

described [11]. It is the scope of this paper to give a more detailed description, as well as

a presentation of recent developments. The notations and definitions in this paper follow

widely the conventions of the LEP Higgs working group [15]. They are recapitulated in

section 2.1 and the first part of section 2.2.

Originally, the weight definition was introduced as a heuristic approach. In section 2.2 a

more general formula for the weight computation is derived from first principles, using var-

ious criteria to optimize the signal sensitivity. Similarities and differences to the likelihood

ratio method are pointed out. After a recapitulation of numerical algorithms in section 3,

some numerical examples for the calculations of of upper limits are given in section 4. A

comparison with other methods for the case of unknown background is also presented there.

Sections 5 and 6 of this paper discuss the treatment of systematic errors. For complex

analyses these are commonly included following the method of ref. [12]. This is a Bayesian

method, superimposed on a frequentist approach to compute confidence levels. It is in-

vestigated under which conditions this method agrees with a frequentist ansatz. A fast

method to include symmetric systematic errors with arbitrary correlations into confidence

level computations is presented. In addition, a very simple example of an incorrect treat-

ment of systematic errors is given. In section 6 it is shown how the sensitivity for signal

detection can be improved by including systematic errors in the weight definition.

The detection of a signal is based partly on event counting and partly on different

shapes of the signal and background weight distributions. To distinguish between these

effects, a special version of fractional event counting is suggested, in which the theoretical

number of events is normalized to the observed number.

2. Specification of the weight function

2.1 Discriminating variables

The aim of any statistical analysis in a search experiment is to distinguish between two

physical hypotheses:

(A) The data consist of background only,
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(B) the data consist of background plus a hypothetical signal.

In such analyses the observed events are ordered according to their signal likeness, given

by the value of a discriminating variable ξ, which is computed for each event. This variable

can be a reconstructed mass, a likelihood computed from several physical observables or

the result of a neural network analysis. It is assumed that theoretical predictions for the

spectral shapes of signal and background, s(ξ) ≥ 0 and b(ξ) ≥ 0, exist. Data may be

available for several decay modes of a new hypothetical particle and several accelerator

energies, and may come from more than one measurement. These different cases are

referred to as experimental channels below. The variable ξ may vary from channel to

channel. Instead of ξ, an arbitrary monotone function of it could be used as well. It is well

known, and will be an automatic result of the next subsection, that the final results are

independent of such a redefinition, apart from binning effects.

All histogram bins are assumed to be statistically independent. It is therefore not

allowed that an event enters the analysis twice. If a channel overlap exists, for instance

between two final states, the two corresponding channels must be rearranged into three:

the exclusive selection of events in the two original channels and the overlap between the

two with a new definition of ξ.

In most cases the spectra of ξ are available in form of Monte Carlo histograms bki =

b(ξki) for the background and ski = s(ξki) for the signal. Here, the index k is used to

identify a channel and i indicates the value of its discriminating variable. The trivial case

of simple event counting corresponds to the limitation to one histogram bin. Throughout

this paper it is assumed that the sum over all histogram contents is normalized to the

expected event rate. For later use, signal efficiencies per bin are defined as

εki =
ski

r
,

where r =
∑

ki ski is the total signal rate. Branching ratios of decays, channel dependent

cross sections and different luminosities are incorporated into εki.

2.2 The computation of event weights

Using the ski and bki histograms, event weights wki can be defined. Their definition is,

however, not unique. Different choices do not give the same result for a given experiment.

The weights can be chosen, however, so as to optimize the expected discrimination between

hypotheses (A) and (B).

If the wki are known, the total weight of an event sample, commonly called ’test

statistic’ X, is defined as

X =
∑

events l

wk(l)i(l) .

The sum extends over all candidates of an experimental data set or a Gedanken experiment.

The indices k(l) indicate the channels and i(l) are the ξ bins to which the events belong.

If an experiment is repeated many times, the resulting total weights show statistical

fluctuations. They are described by probability density functions Pb(X) and Psb(X). These

– 3 –



J
H
E
P
0
1
(
2
0
0
7
)
0
8
0

functions refer to the hypotheses (A) (background only) and (B) (background plus signal).

They are related to the input histograms ski and bki and depend on the weight definition.

Implicitly they depend on the total signal and background rates. Their computation will

be described in detail in the next section.

The hypothesis testing is based on the two confidence levels

CLb(Xcut) =

∫ Xcut

0
Pb(X)dX and CLsb(Xcut) =

∫ Xcut

0
Psb(X)dX . (2.1)

They are the probabilities that the test statistic X is smaller than or equal to Xcut [13].

When the cut Xcut is equal to the test static Xobs observed in an experiment, a small value

of CLsb(Xobs) indicates a measured deficit with respect to hypothesis (B) and it is said

that hypothesis (B) is ruled out with the confidence 1 − CLsb(Xobs). Similarly, a value

of CLb(Xobs) close to unity indicates an excess over the background with an expected

probability 1 − CLb(Xobs) in the absence of a signal. The previous definitions and the

nomenclature were adopted by the LEP Higgs working group [10, 11].

According to the central limit theorem, the functions Psb and Pb, in the limit of high

rates, can be approximated by Gaussians.

Pb(X) =
1√

2πσb

exp

(

− (X− < X >b)
2

2σ2
b

)

;

Psb(X) =
1√

2πσsb

exp

(

− (X− < X >sb)
2

2σ2
sb

)

. (2.2)

The expectation values of X are given by

< X >b=
∑

k,i

wkibki ; < X >sb=< X >s + < X >b=
∑

k,i

wki(rεki + bki) . (2.3)

The sums extend over all channels k and ξ bins i. The variances of the X distribution due

to statistical fluctuations of the event numbers and the ξ values are given by

σ2
b =

∑

k,i

w2
kibki ; σ2

sb = σ2
s + σ2

b =
∑

k,i

w2
ki(rεki + bki) . (2.4)

There is no unique criterion to discriminate between the hypotheses (A) and (B). In

this paper the following optimization strategies are considered:

(i) The mean confidence level < CLsb >b for the interpretation of an arbitrary test

statistic X from the background source (A) as signal plus background (B) should be

minimized.

(ii) The mean confidence level < CLb >sb for interpretation of an arbitrary test statistic

X from the combined signal and background source (B) as background (A) should

be maximized.

(iii) For the case in which a signal is observed, the probability for an upward fluctuation

of the background test statistic to the median signal plus background level should be

minimized.
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(iv) Criterion (iii) is generalized by assuming that the background fluctuates to a signal

plus background level different from its median value by K standard deviations.

(v) The probability to find an existing signal should be maximized.

(vi) The measurement of a hypothetical signal rate should have the lowest statistical error.

(vii) For the case of no signal, the computed bounds nCL on the total signal rate r, at a

given confidence level CL, should be minimized.

Not all of the above requirements are equivalent and the resulting weights differ. These

will be computed in the high rate limit.

Criteria (i) and (ii): Overlap of the test statistic for data samples from the

sources (A) and (B). It is well known that requests (i) and (ii) are identical: Criterion

(i) uses simply the mean probability that an arbitrary Gedanken experiment with signal

and background events has a total weight smaller than or equal to the weight of an arbitrary

experiment counting background only. The equivalence of (i) and (ii) follows from the fact

that the probability in (ii) is complementary.

The probability densities at X = 0 are negligible and one finds, with equations (2.1)

to (2.4),

< CLsb >b =
1√

2πσb

∫ ∞

−∞

dX · exp

(

− (X− < X >b)
2

2σ2
b

)

·

1√
2πσsb

∫ X

−∞

dY · exp

(

− (Y − < X >sb)
2

2σ2
sb

)

.

The brackets on the left hand side indicate the statistical mean value. Both physical models

appear in the equation. The events consist of background, which is indicated by the index

’b’ outside the brackets but they are analyzed in terms of signal and background (CLsb).

The double integral can be simplified to

< CLsb >b =
1

√

2π · (σ2
sb + σ2

b )

∫ −<X>s

−∞

dZ · exp

(

− Z2

2(σ2
sb + σ2

b )

)

, (2.5)

where

< X >s=
∑

k,i

wkiski .

is the expectation value of X for signal events. The probability < CLsb >b depends on the

ratio < X >s /
√

σ2
sb + σ2

b only, to be maximized. Since a common scale factor in all wki

cancels out in the confidence levels, the mean value < X >s can be fixed. The optimization

criterion is then, with a Lagrangian factor λ,

∂(σ2
sb + σ2

b )

∂wki
− λ

∂ < X >s

∂wki
= 0 .
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This equation can be solved for wki. The solution is proportional to λ. After a renormal-

ization the result can be written as

wki =
ski

ski + 2bki
. (2.6)

The factor 2 appears because the width of the background distribution enters twice.

Criterion (iii): Minimal upward fluctuation of the background, median level.

The ratio < X >s /σb between the mean signal test statistic and the background error has

to be maximized.

Criterion (iv): Minimal upward fluctuation of the background, general case.

In the high rate limit, the expected probability for an upward fluctuation of the background

is given by

1 − E[CLb]sb = 1 − 1√
2πσb

∫ Xcut

−∞

dX · exp

(

− (X− < X >b)
2

2σ2
b

)

. (2.7)

The function ’E’ is an expected value for the variable within the brackets, and the indices

outside the brackets indicate the source of the events. The integration limit Xcut is given by

the requirement that the test statistic for signal plus background deviates from its median

value by K standard deviations

Xcut = r
∑

k,i

εkiwki+ < Xb > −K · σsb .

In order to determine the weights, the ratio

(r
∑

k,i εkiwki − Kσsb)
2

σ2
b

has to be maximized.

Criterion (v): Maximal probability to detect a signal. The maximum chance

to detect a signal is obtained by minimizing the expected probability for a downward

fluctuation below a test statistic Xcut, computed for background

E[CLsb]b =
1√

2πσsb

∫ Xcut

−∞

exp

(

− (X− < X >sb)
2

2σ2
sb

)

. (2.8)

If the background level differs from the median value by K standard deviations, one has

Xcut =< X >b +K · σb .

The weights wki are given by maximizing the ratio

(
∑

k,i rεkiwki − Kσb)
2

σ2
sb

.
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Criterion (vi): Best measurement of the signal rate. The measurement of a hy-

pothetical signal rate is most significant, if the ratio

< X >2
s /σ2

sb

is maximal. This request is contained as the special case K = 0 in criterion (v).

The functional form of w for the cases (iii) to (vi) is obtained in the same way as

equation (2.6). Fixing the sum
∑

k,i wkiεki to set the wk scale, computing the derivatives

with respect to wki and absorbing all k− and i-independent sums into common constants,

results for all cases, after a final renormalization, in the functional form

wki =
NRεki

Rεki + bki
. (2.9)

The confidence levels are invariant against multiplication of all wki by a common factor. A

normalization constant N is introduced to adjust the overall maximum weight to 1, but this

factor could also be dropped. The general result (2.9) thus depends on one rate parameter

R only, which has to be tuned to fulfill one of the optimization criteria. To guarantee a

positive denominator in all cases, R should be positive. In general, R is not equal to the

signal rate r but is proportional to it. Equation (2.6), for criteria (i) and (ii), is contained

as the special case R = r/2. For criterion (iii), i.e. the observation of a signal at its median

value and a minimum upward fluctuation of the background, the result R approaches zero.

This means that the weight is proportional to the signal-to-background-ratio. For condition

(vi) one obtains R = r. In the cases (iv) and (v) R depends on K.

Criterion (vii): Minimal rate limit for the signal. To find the lowest expected upper

limit nCL for a non-existing signal, a certain number of standard deviations K equivalent

to CL has to be introduced. A fixed value K is equivalent to a cut in the signal plus

background distribution of X at Xcut = r · ∑k,i εkiwki+ < X >b −K · σsb. It is assumed

that the background is observed at its median level. The rate limit fulfills then the equation

∑

k,i

nCLεkiwki − Kσsb = 0 .

The error σsb depends on nCL implicitly. Differentiating the last equation with respect to

wki and setting dnCL/dwki = 0 gives equation (2.9) again with R = nCL. This is a self

consistency relation between the expected rate limit and the parameter R.

The weights (2.9) depend on the εki to bki ratio only and are therefore invariant against

ξ transformations, which rescale both distributions with the same ξ dependent factor.

Equation (2.9) was derived in the high rate limit. If applied to low rates, it is not anymore

optimal but is still very close to the optimum and gives still bias free results. Of course, the

simple analytic formulae (2.5), (2.7) and (2.8) for the confidence integrals and the results

for the R values given here are then not anymore valid.

Throughout this paper it is understood that the weight algorithm, including the pa-

rameter R, is fixed a priori and not fitted to observed data. This makes it necessary

to generalize the criteria (i) to (vii) to non-Gaussian distributions and to compute the
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functions Psb, Pb and the expected confidence levels < CLsb >b, E[CLsb]b and E[CLb]sb
numerically, using theoretical predictions for εki, bki and r. The parameter R has to be

varied until a chosen optimization criterion is fulfilled.

As will be shown later, the optimization procedure allows variations of R within rather

wide regions if the user allows relative numerical tolerances of the order of a per mille for

the expected confidence levels or expected rate limits. On the contrary, for a specific data

set the results may be R dependent. In general, this effect is small at large rates. However,

in low statistics experiments the analyses may become rather ambiguous.

A user has to select a parameter R without introducing subjectivity. In many cases

the signal-to-background-ratio is a suitable choice. This is especially true if a signal is

observed but no theoretical prediction for the cross section exists. An expected signal rate

is not needed to define w and the function Pb can be used to compute the probability

for an upward fluctuation of the background to the measured test statistic. If a definite

signal prediction has to be checked, the value R = r/2 is the appropriate choice. For

the determination of upper bounds the expected limit E[nCL] can be minimized. An

example for this procedure is given in section 4.2. This strategy works if the background

is sufficiently large.

2.3 Two discriminating variables

Experiments searching for a new hypothetical particle often use a signal likelihood variable

to reduce the background, and, in many cases, the likelihood definition does not contain the

reconstructed particle mass explicitly. The distribution of the reconstructed masses m is

only weakly correlated to the distribution of the likelihood L, and an overall discriminating

variable ξ can be constructed. Following equation (2.6), a simple product ansatz can then

be used:

ξ =
Dsm(m)DsL(L)

Dsm(m)DsL(L) + 2Dbm(m)DbL(L)
, (2.10)

where the D’s are the probability density functions and the indices indicate the physical

observables and signal (s) or background (b). This procedure was used in Higgs searches

of the OPAL collaboration [14].

The definition (2.10) has the property that the weights wki, computed from a Monte

Carlo sample with equation (2.6), agree with ξ if the two physical variables are truly

uncorrelated, i.e. the product ansatz is correct. Any deviation indicates the presence of

correlations or unacceptably large fluctuations in the Monte Carlo samples used to generate

the histograms. This was found in the analysis of ref. [14], where the initial observation of

a few statistical anomalies made additional Monte Carlo simulations necessary.

2.4 Related approaches

An alternative approach, which is used quite often, is the ordering of experiments according

to the likelihood ratio Lsb/Lb between the signal plus background and the background

interpretation of a data set [13, 6, 7]). Poisson statistics give

Lsb/Lb = exp(−r)

∏

k,i(ski + bki)
n(k,i)

∏

k,i b
n(k,i)
ki

, (2.11)
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where n(k, i) is the number of candidates observed in the bin combination (k, i). It is

known that this likelihood-ratio-method is equivalent to event counting with a weight

wki = ln

(

1 +
ski

bki

)

. (2.12)

The power expansion in terms of the signal-to-background ratio is

wki =
ski

bki
− 1

2

s2
ki

b2
ki

+
1

3

s3
ki

b3
ki

+ . . . .

This can be compared with twice the expansion of equation (2.6). It turns out that the

first two terms agree and the difference of the third terms is s3
ki/(12 · b3

ki) only so that the

results of both methods are very similar if ski/bki . 1.

Significant differences between the two approaches are possible if one or more candi-

dates are present in phase space regions where ski À bki. If the background level is correct,

the appearance of only one candidate can be a significant indication for a signal. However,

in many cases the background is underestimated and the singularity in equation (2.12) then

can produce a spurious discovery. Such an effect introduced by one candidate, probably

caused by underestimated background, was found in an earlier LEP combination of Higgs

searches [11]. It had no impact on the final result, however, because the candidate mass

was well above the combined mass limit, where the theoretical signal cross section was too

small for a signal interpretation.

Contrary to equation (2.12), equation (2.9) approaches a constant event weight in the

limit bki → 0 and is thus robust against such effects. Another important advantage of (2.9)

is that it can be generalized to incorporate systematic errors, which are correlated between

the ξ bins (see section 6).

Definition (2.9) is related to the maximum likelihood fit of the signal rate. The loga-

rithmic derivate of the likelihood is

d ln Lsb

dr
=

1

Lsb
· dLsb

dr
=

X

r
− 1 ,

with

X =
∑

l

εk(l) · r
εk(l) · r + bk(l)

.

which is equivalent to (2.9) with R = r. The likelihood fit determines r from the condition

X = r.

3. Weight distributions

3.1 Folding procedure

After the weight function w(ξ) has been specified, the density distributions D(ξ) can be

transformed into distributions of w, for one event denoted by P1(w). The symbol D stands

for s or b. The histogram conversion is illustrated in figure 1. The cumulated integral
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Figure 1: Construction of the cumulated

weight distribution of signal events from

their ξ distribution and the weight function

w(ξ).

Figure 2: Spectra of the test statistic X

for fixed numbers of events. The distribu-

tions are for a small signal-to-background ra-

tio and a Gaussian signal over a constant

background. The functions are given for the

signal.

∫ wcut

0 P (w)dw, for a certain value wcut, is illustrated by the shadowed area. In case of

histograms, all ξ bins with wki ≤ wcut have to be counted. The cumulated spectrum can

be converted into the differential one by taking bin-to-bin differences. The central w values

of the bins are assigned to all predicted and observed events in that bin. The analytic

formula for a continuous function is

P1(w) =
∑

l

D(ξl)

|dw
dξ (ξ = ξl)|

. (3.1)

The sum extends over all solutions ξl of the equation w(ξ) = ξ and appears because the

backward transformation from w to ξ is not unique.

The differential histograms P1(wj) may have gaps, but these are never populated by

Monte Carlo or data events. The extreme case would be a delta function at w = 1 for

simple event counting. Since the distributions are not constant within a bin, binning effects

can introduce relative errors in the rate limits of the order of 1/(< w > · number of w

bins).

The distribution of the test statistic X =
∑n

l=1 wk(l)i(l), for a fixed number of n events,

can now be computed from the distribution for one event by iterative folding:

Pn(X) =

∫ min(1,X)

max(0,X−(n−1))
Pn−1(X − w) · P1(w) · dw . (3.2)

The maximum weight for one event was normalized to 1. The integration limits guarantee

that the arguments do not become negative or exceed their upper limits. In general, these
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equations have no analytic solutions and must be evaluated numerically by matrix multi-

plication. The stepwise evolution of Pn, for a Gaussian signal and constant background, is

shown in figure 2. The singularity of P1 at X = 1, due to the maximum in the ξ distribu-

tion, survives as a step for n = 2 and as a vertical slope at the upper end for n = 3. At

n = 4 all discontinuities have disappeared.

If the rates are large, many folding operations are necessary, but the results are needed

for one n interval only, whose lower and upper bounds nmin, nmax have to be chosen to

reach a desired accuracy. To speed up the numerical computations, it is advantageous to

double the event numbers in every folding step until the minimal value of n is reached,

and to keep the distributions for n = 2m with integer m for subsequent use. It is not

necessary to compute folding integrals for all n. Distributions in the high n region can

be computed partly by interpolation because the shapes are relatively stable. It is also

possible to combine two histogram bins into one, if the number of X bins per standard

deviation exceeds a cut with increasing n. This process can be iterated.

Finally the Poisson distribution for the appearance of n events has to be taken into

account. If n is the mean rate, the final probability density is

P (X) = exp(−n) · δ(X) +

∞
∑

n≥X/max(w)

exp(−n) · nn

n!
· Pn(X) . (3.3)

For a given X > 0, only the terms with n ≥ X/max(w) contribute.

Formula (3.3) is used to compute the complete distribution function Pb(X) for back-

ground events. The distribution for signal events can also be obtained, and the result Ps(X)

has to be folded with Pb(X) to obtain the overall distribution for signal and background,

Psb(X).

The repetition of many folding operations would be time consuming if the signal rate

r had to be modified iteratively. Therefore, the Pn distributions for fixed numbers of signal

events, called Psn, were folded with the complete background distribution Pb(X) from (3.3).

To compute confidence levels, only the cumulated distributions are needed:

Cn(X) =

∫ X

0
dZ ·

∫ min(Z,n·max(w))

0
dY · Pb(Z − Y )Psn(Y ) . (3.4)

The cumulated distribution for the sum of signal and background is then

CLsb(X) =

∫ X

0
Psb(Y )dY = exp(−r) ·

(

exp

(

−
∑

ki

bki

)

+
n=nmax

∑

n=nmin

rn

n!
· Cn(X)

)

. (3.5)

These results can now be used to compute the expected confidence levels (2.7) and (2.8),

needed to tune the R parameter:

E[CLsb]b = CLsb(Xcut) with CLb(Xcut) = CL ;

E[CLb]sb = CLb(Xcut) with CLsb(Xcut) = CL .

The parameter CL replaces the parameter K in criteria (iv),(v) and (vii) and Xcut has to

be computed from it by inversion of (2.1).
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The expectation values needed for criteria (i) and (ii) are

< CLsb >b=

∫ ∞

0
CLsb(X)Pb(X)dX ;

< CLb >sb=

∫ ∞

0
CLb(X)Psb(X)dX .

As already shown, both expectation values have their optimum at the same value of R.

A different numerical procedure to compute the series of folding integrals (3.5), based

on a Fourier transformation, is given in ref. [21].

3.2 Some analytic results

The functions P1(w) and their statistical moments can be given analytically for a few ξ

distributions, if the weight is proportional to the signal-to-background-ratio. According to

equation (2.9) this corresponds to the limit R → 0, which implies either a small signal-to-

background-ratio or the lowest probability for a background fluctuation up to the median

signal plus background level (criterion (iii)). Three cases will be discussed below.

• Gaussian signal, constant background. The w distribution for a Gaussian function

D(ξ) ∼ exp(−(ξ − ξ0)
2/(2σ2

ξ )), its mean value, and its mean square for one signal

event, are

Ps1(w) =
1√

−π · ln w
; < w >s=

1√
2

; < w2 >s=
1√
3

. (3.6)

At the signal maximum the weight is set to 1. The background events are distributed

according to

Pb1(w) = N ·
√

2σξ
dB
dξ

w ·
√
− ln w

. (3.7)

This equation contains a normalization factor N , and with N = 1 it gives the total

background rate per w interval. The constant dB/dξ is the differential background

rate. The expression is not integrable at w = 0 because an infinite number of events

is taken into account far away from the signal. After truncation of the ξ spectrum

the integral converges. The total mean and variance of w are finite even without the

cutoff.

• Breit Wigner resonance, constant background. The convention here is

D(ξ) ∼ 1

(ξ − ξ0)2 + γ2
.

The distribution, the mean and mean square of w for one signal event are

Ps1(w) =
1

π ·
√

w · (1 − w)
; < w >s=

1

2
; < w2 >s=

3

8
;

and the background distribution is

Pb1(w) = N ·
γ dB

dξ

w ·
√

w · (1 − w)
.
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• Two-dimensional Gaussian signal, constant background. Two independent discrim-

inating variables are distributed according to D(ξ, η) ∼ exp(−(ξ − ξ0)
2/(2σ2

ξ )) ·
exp(−(η − η0)

2/(2σ2
η)). Instead of equations (3.6) and (3.7) one has

Ps1(w) = 1 ; < w >s=
1

2
; < w2 >s=

1

3
;

Pb1(w) = N · 2πσξση

w
· ∂2B

∂ξ∂η
.

From this the parameters needed for the high rate estimates of confidence levels in sec-

tion 2.2 are obtained as

• Gaussian signal

< X >s=
r√
2

; < X >b=
√

2πσξ
dB

dξ
; σ2

s =
r√
3

; σ2
b =

√
πσξ

dB

dξ
.

• Breit Wigner signal

< X >s=
r

2
; < X >b= πγ

dB

dξ
; σ2

s =
3

8
r σ2

b =
1

2
πγ

dB

dξ
.

• Two-dimensional Gaussian

< X >s=
r

2
; < X >b= 2πσξση

∂2B

∂ξ∂η
; σ2

s =
r

3
; σ2

b = πσξση
∂2B

∂ξ∂η
.

4. Applications

4.1 Upper limits without background subtraction

If nothing is known about the magnitude and the spectral shape of the background, upper

limits for a signal rate can still be obtained by omitting the background in (3.5). The

function CLsb has then to be replaced by

CLs(X) =

∫ X

0
Ps(Y )dY = exp(−r) ·

(

1+
n=nmax

∑

n=nmin

rn

n!
·
∫ min(X,n·max(w))

0
dY · Psn(Y )

)

. (4.1)

Apart from trivial event counting the only meaningful ansatz for the weights, valid for one

search channel, is

wki =
ski

max(ski)
. (4.2)

The upper rate limit, for a given CLs, is obtained by solving (4.1) for r. The 95%

exclusion limits (CLs = 0.05) for Gaussian and Breit-Wigner ξ distributions are shown

as a function of the test statistic in figure 3. For comparison, the figure also contains the

95% confidence limits from Poisson statistics without spectral sensitivity. In this case, the

abscissa values are the observed event numbers.
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Figure 3: Excluded count rates with 95%

confidence without background subtraction.

lower curve: Gaussian distribution, upper

curve: Breit-Wigner resonance. The dots

at integer abscissa values are the Poissonian

limits from unweighted counting.

Figure 4: Limits on signal production rates

from 3 events without subtraction of back-

ground. A Gaussian mass spectrum is as-

sumed. The candidate positions are given

by the points and the mass resolution is in-

dicated by the error bars. Full curve: this

work, dashed curve: Grivaz and Diberder,

dotted curve: Gross and Yepes.

Figure 4 shows a 95% signal exclusion plot computed from three observed events, using

their measured masses and varying a hypothetical resonance mass. Accidentally, two of

the mass values are almost identical. The data set has been taken from ref. [7]. The mass

resolution is assumed to be Gaussian. The results obtained with equation (4.1) are given

by the solid line. The curve has kinks at the rate limit 5.2. This effect is visible in figure 3,

too. It is due to the singularity of the distribution P1(w) at w = 1 (see figure 2). At the

positions of the candidates, the rate limits are slightly worse compared to the Poissonian

limits of 4.74 for one and 6.30 for two observed events. These more pessimistic results from

fractional counting arise from theoretical configurations containing more events than the

data sample but the test statistic being smaller than the observed one. This is the price one

has to pay for mass discrimination. In mass regions away from the observed candidates,

the rate limits from fractional counting are more stringent than the Poissonian limits.

The problem of obtaining mass selective rate limits without background subtraction has

been discussed previously. Gross and Yepes [16] use fractional event counting, too. Their

weight is defined as the probability that an arbitrary event has a larger mass difference

with respect to the hypothetical particle than the candidate. In ref. [16] the incorrect

assumption is made that the confidence limit for an integer number of fractional counts is

equal to the Poissonian limit. The exclusions are too stringent. Nevertheless, the ansatz

for the weight is a legitimate alternative, and the rate limits obtained with it, using the
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folding procedure (4.1), are added in figure 4. A disadvantage of this algorithm is that it

produces unnatural sharp spikes at the candidate masses, and the limits at these positions

lie far above the Poissonian limits.

Another formalism was given by Grivaz and Diberder [17]. They use a formula like

the sum (4.1), truncated at the number of observed events, and the integrals are replaced

by the probabilities that an arbitrary mass configuration of n events is less likely than the

configuration of the n observed events closest to the hypothetical mass. The algorithm

does no independent event counting. It has therefore the technical complication that

corrections have to be applied to the equivalent of equation (4.1) to obtain the final unbiased

probabilities [17]. Numerical results are also included in figure 4. They are very similar

to those of this work.

4.2 Upper limits with background subtraction

If the background is known without any systematic error, a rate limit corresponding to a

confidence level CL can be determined from the condition

CL = CLsb(Xobs) . (4.3)

The r dependence is given by (3.5), which contains the Poisson distribution. If the observed

test statistic Xobs is smaller than the expectation from background it can happen that

equation (4.3) has no positive solution. To avoid this problem the criterion to compute r

is modified to [18, 6, 7]:

• The probability to observe a test statistic X smaller than or equal to the measured

value Xobs, if the background contribution alone is ≤ Xobs, is required to be smaller

than or equal to CL.

This ansatz is motivated by the Bayesian treatment of background subtraction in

counting experiments [19] and it gives an over-coverage by definition. The equation

CL = CLs(Xobs) with CLs(Xobs) =
CLsb(Xobs)

CLb(Xobs)
. (4.4)

has to be solved for r.

Alternative procedures have been suggested which avoid the over-coverage as much as

possible. The unified approach of Cousins and Feldman gives confidence belts instead of

one-sided limits and has been applied to the Poisson and the Gaussian distribution [22]. The

results for r are more stringent than those of (4.4). Algorithms with optimized coverage for

the Bayesian procedure have been investigated by Roe and Woodroofe [23]. For the Poisson

case this method can be shown to be related to equation (4.4) [23]. Other approaches with

improved coverage are the ordering scheme of Punzi [24] and the profile likelihood method

[25], where systematic errors have been included by Rolke, Lopez and Conrad [26].

The reasons for adopting (4.4) in this paper are the robustness of upper limits and the

inclusion of the systematic errors in the event weight definition as described in section 6.

It is a difficult and so far unsolved problem how to improve the coverage properties and to

introduce this weighting scheme at the same time.
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Figure 5: Count rates excluded with 95% confidence as function of the weight sum. The back-

ground is subtracted. The limits are for a Gaussian signal distribution and a constant background

level β. The weight is taken proportional to the signal-to-background-ratio.

Figure 5 shows the 95% exclusion limits on r (CL = 0.05) for a Gaussian signal and

constant background. To obtain the results the weight definition (4.2) was used, which

is equivalent to R → 0 in equation (2.9). The differential background level was varied

and parameterized by its mean contribution to the test statistic β =< X >b=
√

2πσξ
dB
dξ .

Asymptotically, the splitting between the curves in figure 5 becomes constant at large

X. The rate limits computed with equation 4.4 are then lower than the results without

background subtraction by an amount β
<w>s

=
√

2β.

According to section 2.2, the signal-to-background-ratio is not the best choice for the

filter. Figure 6 shows the optimization of the R parameter for one special background level.

It is based on the median expected limit E[n95]b, the theoretical signal rate n95 which

corresponds to 1 − CLs = 0.95, if only background contributes to the analyzed events. It

is assumed that the test statistics has the median value β. Only a very weak dependence

of E[n95]b on R, of the order of δ = (E[n95]b−min(E[n95]b)/min(E[n95]b) = 0.3%, can be

seen. The limits from a real observation can vary by several per cent, however, depending

on the ξ positions of the events, and in general they are a monotone function of R.

Figure 7 gives the median expected limits E[n95]b as a function of β. The lower

curve indicates the R parameters used to obtain these results. At large β, one has R ≈
1/2 · E[n95]b. The difference to the above estimate R ≈ E[n95]b is due to the fact that

finally the limit computation is based onto CLs and not onto CLsb. Below β = 1 Poisson

fluctuations play a significant role. There are several local minima of E[n95]b if R is varied,

and no solution has an obvious advantage over the others. The R values given in figure 7

below β = 2 are downward extrapolations consistent with R = 0.4 · E[n95]b, which is the
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Figure 7: Median expected rate limits

E[n95]b as a function of the background level

β, if no signal exists. The lower curve gives

the parameters R used to compute the limits.
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Figure 8: Count rates excluded with 95%

confidence as function of the weight sum.

The background is subtracted. The limits

are for a Gaussian signal distribution and

constant background levels β. The R pa-

rameters of figure 6 were used to define the

weights (see text).

Figure 9: Limits on the production rate

from 3 observed events with subtraction of

3 background events. The data are identical

to figure 4. The curves are for different def-

initions of the weight algorithm and demon-

strate the ambiguities in the analysis.

– 17 –



J
H
E
P
0
1
(
2
0
0
7
)
0
8
0

result around β = 2. They can be considered as upper bounds. Figure 8 is analogous to

figure 5, but now the optimized R values from figure 7 are used in the analysis. It should

be noted that the definition of X is not the same in figures 5 and 8, and in the latter case

it is β dependent. The dashed step curve for β = 0 corresponds to the Poisson distribution

because for any finite R and β = 0 the algorithm does normal event counting.

For small finite β the results depend strongly on R. This dependence is illustrated in

figure 9. The example of figure 4 with three measured particle masses was analyzed again.

This time it was assumed that a background of three events is predicted within the mass

region of the plot, and this background was subtracted. It corresponds to β = 0.88. The

limits are shown for three different weight definitions, all leading to legitimate results.

The parameter R = 4, resulting in a broad exclusion curve, is larger than the value

from figure 7, which is approximately R = 1.6. The second exclusion curve in figure 9

corresponds to this value. The third curve for R = 0 corresponds, apart from background

subtraction, to the result in figure 4. This ambiguity was already observed for the like-

lihood ratio method [7], the results of which are close to the case R = 1.6 shown here.

Since the expected limit E[n95]b depends only weakly on R it is recommended to keep the

maximal mass resolution and to use R = 0 in low statistics experiments to resolve the

above ambiguity.

5. Systematic errors

5.1 Parameterization of systematic errors

The errors are classified according to sources j. In principle every source may influence

the ξ spectra of signal (s) and background (b) in all channels. It is parameterized by error

functions σ
(s)
j,ki and σ

(b)
j,ki whose absolute values are the rms errors, given for channel k and

bin i.

For the technical handling the following requirements were adopted in ref. [15]:

• Errors from the same source are treated as fully correlated between different bins of

a signal or background histogram. The signs of the error functions determine the

signs of the correlations.

• Errors from the same source are treated as fully correlated between signal and back-

ground.

• Errors from the same source are treated as fully correlated between different search

channels.

• Errors from different sources are treated as uncorrelated. The spectra ski and bki

are often available in an analytic form depending on parameters with correlated

systematic errors. These correlations can be removed by diagonalizing the error

matrix.

• The total relative error is much smaller than 100%.
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The last requirement is not always satisfied. The error due to a mass resolution, for

instance, has the same order of magnitude as the spectrum itself in bins far away from the

mass peak and its distribution becomes asymmetric. However, it will be shown later in

section 6 that such bins may be dropped.

The effect of systematic errors on confidence levels is commonly studied by Monte

Carlo simulations [7]. To this aim the input spectra are modified according to

s∗ki = ski +
∑

j

σ
(s)
j,kiζj , (5.1)

b∗ki = bki +
∑

j

σ
(b)
j,kiζj

where the ζj are random numbers with mean zero and variance unity.

Often error functions σ
(s)
j,ki, σ

(b)
j,ki related to likelihood or neural network variables are

not well known if known at all. Usually, systematic errors are evaluated by modifying

Monte Carlo simulations and counting the rate changes above an effective selection cut.

The assumption is then made that the systematic errors have the same dependence on the

discriminating variable as the signal or background distributions:

σ
(s)
j,ki = δ

(s)
jk ski ; (5.2)

σ
(b)
j,ki = δ

(b)
jk bki .

The remaining relative errors δ
(s)
jk , δ

(b)
jk are still source and channel dependent but the bin

dependence is ignored. In general, this ansatz is not valid and dictated by lack of knowledge.

Nevertheless it has been applied in search experiments (for the Higgs boson, see ref. [15]

and references therein). Thus this ansatz is used here as well.

5.2 Correction of confidence levels in the frequentist approach

In this subsection it is assumed that the sum X is a continuous variable. The distribution

functions Psb(X) and Pb(X) are not allowed to have delta-function-like singularities.

In the following considerations, the event source and the analysis hypothesis are the

same: background events are analyzed in terms of background, and the same is done for

the combination of signal and background. The indices of the functions CLsb, CLb are

dropped for simplicity.

For the case of a correct analysis hypothesis with the correct production rate the CL

values are uniformly distributed between zero and one. An ensemble of observers is intro-

duced to average over the modified parameter sets given by equation (5.1). The distribution

function Drec(CLrec) of the reconstructed confidence levels CLrec, as evaluated by one ob-

server, is not constant. The modifications (5.1) introduce variable slopes. Because CLrec

has a lower and an upper bound, the function Drec(CLrec), averaged over the ensemble,

peaks at 0 and 1. Without any correction, the observers reconstruct too often data deficits

or excesses, as illustrated in figure 10.

A correction can be made in the following way. The distribution Drec has to be

integrated up to the reconstructed confidence level CLobs of a certain observer and the
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integral obtained is then the corrected confidence level (see figure 10):

CLcorr =

∫ CLobs

0
Drec(CLrec)dCLrec . (5.3)

This equation, known as the probability integral transform, is valid for arbitrary shapes of

the ζj distributions.

The procedure has to be applied independently to both CLb and CLsb. The problem

is that one observer of the ensemble cannot reconstruct the function Drec of the ensemble

because the true physical parameters are unknown. The observer necessarily takes his

own spectra s(ξ), b(ξ), instead of the true ones, to evaluate the correction of CLobs. This

replacement is unavoidable and causes deviations of the average CLcorr distribution from

uniformity.

Equation (5.3) is not convenient for numerical calculations. Instead, CLcorr should be

expressed as an integral over the stochastic variables ζj.

As already mentioned, an observer starts with original signal and background spectra

ski, bki, from which the test statistics Xo is constructed. The mean value and the rms error

of Xo are denoted by < Xo > and σo, respectively. The signal and background distributions

are modified according to equations (5.1). The new spectra are used to redefine the event

weights. The original spectra can then be inserted into equations (2.3) with the new weights

used. The mean value of the test statistic < Xo > and its rms error σo are shifted to < X >

and σ. The complete folding according to section 3.1 gives the function CLorig(X, ~ζ). For

clarity the ζj-dependence of CLorig is stated explicitly here. The modified spectra have

to be analyzed, too, resulting in the distribution Prec(X, ~ζ) with the statistical parameters

< X∗ >, σ∗ and its integral CLrec(X) =
∫ X
−∞

Prec(Y, ~ζ) · dY . To get the integration limit

in equation (5.3) and figure 10 the last integral has to be identified with CLobs

CLobs =

∫ X∗(~ζ)

−∞

Prec(Y, ~ζ)dY . (5.4)

The probability for the test statistic X of the original distribution to be lower than or

equal to the upper limit X∗(~ζ) is CLorig(X
∗, ~ζ). To get the integral (5.3) a summation is

performed over all Monte Carlo experiments. This leads to the final result

CLcorr(CLobs) =

∫ ∞

−∞

∏

j

dζj · P (f)
sys (~ζ) · CLorig(X

∗, ~ζ) , (5.5)

where P
(f)
sys (~ζ) is the distribution of the random vector ~ζ in the frequentist approach and

the argument X∗ is taken from the condition (5.4).

5.3 Equivalence between the frequentist and the Bayesian treatment of system-

atic errors

Usually systematic errors are treated with the Bayesian method introduced by Cousins and

Highland [12]. Their formula for the Poissonian case can be generalized for the situation

with event discriminators in many channels. For systematic errors with no correlations

between bins the multi-channel-case has been treated by Lista [27].
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Figure 10: Distribution of reconstructed confidence levels for a Poisson distribution with a mean

rate of 100 events and a systematic error of 10%, as reconstructed by many observers.
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Figure 11: Relationship between the frequentist and the Bayesian treatment of systematic errors.

Central curve: original distribution of the test statistic. X is a measured value. Right curve:

shifted distribution according to Bayesian error treatment for ζ < 0. Dark area: contribution

to the corrected confidence level. Left curve: shifted distribution according to the frequentist

approach for the same value of ζ. The two horizontally hatched areas are equal by construction.

The agreement of both approaches is guaranteed if the small marked areas are equal.

As mentioned above, an observer does not know the true ξ spectra but only the esti-

mates ski and bki. The possible variants of the true spectra can be described by a set ~ζB of

stochastic variables. Again a function P
(B)
sys ( ~ζB) is introduced, the probability that the set

~ζB is the correct one. The reconstructed confidence levels depend on ~ζB . Now two different

statistical methods are be mixed: to include systematic errors, the confidence levels from
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the frequentist approach are folded with the observers prejudice on the true spectra:

CLcorrected =

∫ +∞

−∞

∏

j

dζBj · P (B)
sys ( ~ζB) · CLrec(X, ~ζB) . (5.6)

Here, X is the measurement of the observer.

The theoretical spectra enter the analysis twice: firstly they are needed to compute

the weight function, and secondly the absolute rates are used in the statistical analysis

of section 3.1. It has always been a matter of debate whether systematic errors should

be assigned to the weight definition wki, and it has become practice to keep this function

fixed [11, 15]. The argument for this is that the weight definition is arbitrary and the results

are correct for any fixed definition. Within the frequentist approach, this argument is not

correct for a principle reason: it is highly unlikely that two observers use exactly the same

numerical parameters for their data analysis. Every observer constructs his own weight

function, and the only possible agreement is a common value of the ratio R/r relevant for

equation (2.9). Nevertheless, in the following a fixed weight definition is adopted because

it is then easy to compare the frequentist and the Bayesian approaches. One has therefore

Xo = X and < Xo >=< X >.

Equations (5.6) and (5.5) look completely different. However, a wide class of X den-

sities, for which both approaches agree, can be constructed assuming shape invariance of

the X distribution:

Porig(X) = Prec(X, ~ζ = 0) = F

(

X− < X >

σ

)

,

Prec(X, ~ζ) = F

(

X− < X∗ >

σ∗

)

. (5.7)

The denominators are the rms errors of the test statistic and F is a universal function

independent of the stochastic variables ζj. One has to distinguish the shifted parameters

< X∗ >,σ∗ for the frequentist case from those of the Bayesian treatment, indicated by

superscripts (f) and (B). A constant reconstructed confidence level means that the ratio

(X− < X∗(f) >)/σ∗(f) is the same for ~ζ 6= 0 and ~ζ = 0:

X∗− < X∗(f) >

σ∗(f)
=

X− < X >

σ

X∗ = X · σ∗(f)

σ
+ < X∗(f) > − < X > ·σ

∗(f)

σ
. (5.8)

The ansatz for the systematic error within the frequentist approach is

< X∗(f) >

σ∗(f)
=

< X >

σ
+ f(~ζ) · σ

(f)
sys

σ
. (5.9)

The arbitrary function f of the stochastic variables ~ζ describes non-Gaussian system-

atic errors. Its variance is normalized to unity. Equivalently, for the Bayesian treatment

the parameterization is given by

< X∗(B) >

σ∗(B)
=

< X >

σ
+ g( ~ζB) · σ

(B)
sys

σ
. (5.10)
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A set of Bayesian stochastic variables ~ζB is introduced here. The vector ~ζ parameterizes

a shift from the original X distribution to the function used by an arbitrary observer. In

the Bayesian interpretation, the direction of the shift has to be inverted, so that ~ζB = −~ζ.

A condition sufficient for the equivalence of (5.6) and (5.5) is then

Prec(X, ~ζB) = Prec(X,−~ζ) = Porig(X
∗) · dX∗

dX
(5.11)

for any X and ~ζ.

Equations (5.7) to (5.10) have to be inserted into (5.11). The Bayesian quantities

< X∗(B) >,σ∗(B) enter the left hand side and the frequentist quantities < X∗(f) > and σ∗(f)

the right hand side. A relationship between the widths σ∗(B), σ∗(f), the systematic errors

σ
(f)
sys , σ

(B)
sys , and also the functions f and g has to be found. Consistency in equation (5.11),

and thus equivalence between the two approaches, can be obtained with

σ(f)
sys = σ(B)

sys ,

σ∗(B)(−~ζ) = σ∗(f)(~ζ) = σ ,

−g(−~ζ) = f(~ζ) .

In general, this derivation of the equivalence fails if one introduces an arbitrary < X >

dependence into σ∗, σsys or f and g, or if the shape invariance (5.7) is violated. The

meaning of the symmetry requirement on f, g is illustrated in figure 11.

The above arguments for the equivalence of both approaches have the following general

features:

• The distribution of the test statistic may be an arbitrary continuous function.

• The distribution of systematic shifts may have an arbitrary shape. Even one-sided

shifts are allowed.

To guarantee the equivalence between the frequentist and the Bayesian treatment of sys-

tematic errors, the combination of the following conditions is sufficient but not necessary:

• A fixed weight function is assumed, so that the test statistic for one experiment is

independent of the observer.

• The systematic errors shift the X distributions but do not change their shapes.

• In addition, the ~ζ distribution of systematic errors is invariant against translations

of the X distributions.

In general, the Bayesian and the frequentist approach do not agree if one of the last two

conditions is not fulfilled. If both criteria are violated, the effects can compensate each

other by chance. This requires, however, an unnaturally fine tuning between the functions

Prec(X, ~ζ) and the error functions f(~ζ) and g(~ζ).
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5.4 Numerical treatment of systematic errors

The numerical treatment here is limited to symmetric systematic errors. As a consequence,

the confidence level shifts are proportional to the mean squares of errors if the latter are

small. Asymmetric errors modify the expectation values < X >b and < X >sb in first order

and have larger impacts. It is easy to include the Bayesian treatment of systematic errors in

a computer program and this code can also be applied to low counting rates. A repetition

of the folding operations (3.2) inside a Monte Carlo loop based on (5.1) is, however, very

time consuming. A faster program can be set up using the shape invariance (5.7) and

the additivity assumption (5.10), together with Gaussian distributions for the systematic

errors of < X >b and < X >sb.

The inclusion of systematic errors into the final results is then straightforward: With

the help of NMC Monte Carlo experiments (5.1) and the definitions (2.3) and (2.4) the

systematic error is obtained from

χ2
sys =

1

NMC

∑

MC experiments

(

< X∗ >

σ∗
− < X >

σ

)2

.

In this expression an arbitrary scaling factor in the wki cancels and the expectation values

involved can be computed without the folding procedure (3.2).

Equation (5.6), together with (5.7) and (5.10), leads to a folded distribution, from

which the corrected confidence levels can be computed:

CLcorr(X) =

∫ X

0
dY · Pcorr(Y ) with

Pcorr(X) =
1√
2π

∫ ∞

−∞

dζ · exp(−ζ2/2) · Porig(X + ζχsysσ) . (5.12)

The parameter χ2
sys is different for background alone and a combination of signal and

background, and it depends on the overall signal-to-background-ratio. If the signal rate r

is modified to find a rate limit, χsys has to be reevaluated.

The procedure has the advantage that it avoids a conceptual problem for the extraction

of rate limits from CLs. Without systematic errors, CLsb is a monotonic function of CLb

if the test statistic is eliminated. Since this function becomes observer dependent in the

presence of systematic errors, it is unclear how CLs should be defined. In the above

approach the ratio of folded functions CLsb and CLb is the natural choice. The method

has been suggested by Zech [20] for counting experiments.

5.5 Poisson distribution at small rates

Even if the frequentist and Bayesian handling of systematic errors agree with each other,

it is not guaranteed that the latter one is correct at low rates. In this region the Pois-

son distribution violates the criterion of shape stability as required in subsection 5.3. It

was therefore investigated whether the Bayesian treatment gives a reasonable spectrum of

reconstructed confidence levels, for the Poisson distribution. As an extreme case which

has practical relevance for background estimates, the problem was studied for a very small
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Figure 12: Spectra of confidence levels for a Poisson distribution with n0 = 2 and a systematic

error of 20%, as reconstructed by many observers. Lower (upper) part: The confidence levels are

corrected (not corrected) for systematic errors. Left: differential distributions. The dots mark the

results for the abscissa values 90%, 99% and 99.9%. Right: cumulative distributions. The step

functions show the true original cumulative distribution of CL.

mean rate n0 = 2 with a large Gaussian systematic error of 20%. The formalism how to

get corrected confidence levels was taken from ref. [12].

The following test was made. An ensemble of observers was introduced with different

choices for the mean rate. For any observer a new Poisson distribution was generated and,

for any number of counts, n, the confidence levels CLrec(n) and CLcorr(n) were computed,

with the observer’s mean rate n0. Here, CLrec(n) is defined without systematic errors
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and CLcorr(n) includes the correction from ref. [12]. The results were histogrammed with

weights equal to the true probability to find n counts.

Figure 12 shows the resulting differential as well as the cumulative distributions. The

differential spectrum of corrected confidence levels is found to be non-uniform at high

CLcorr, where it still exhibits a spike at CL = 1. The right column of figure 12 shows the

cumulative CL distribution in a special logarithmic representation. The result does not

approach the diagonal at CL = 1. One could blame this on the fact that the same relative

error was assumed for all observers and that a more adequate choice would be δ ∼ 1/
√

n0.

Tests have shown that this ansatz gives some improvement but does not cure the problem.

As an example, we assume that eight events are observed. To get the probability for

a fluctuation from n0 to eight events or more one has to compute the confidence level CL

for seven events. Poisson statistics without systematic errors give 1 − CL = 0.0011, the

corrected value according to ref. [12] is 1−CL = 0.0018. With these numbers one obtains,

from both graphs in the right column of figure 12, a probability of 0.0050 which should be

quoted as a more realistic estimate, instead of the value 0.0018.

A clear conclusion is that indications for discoveries obtained from low statistics sam-

ples should be considered with great care if the background has a substantial uncertainty.

Even after standard corrections for systematic errors the significance of the observation is

still overestimated. For a given experiment this bias has to be investigated.

There is one exceptional case where the treatment of the systematic error in a low

statistics experiment is correct. This example is the counting of the mean value n0 in a

Monte Carlo simulation and can be found in ref. [28]. With a mathematical theorem given

in that paper it can be shown that the Bayesian treatment of the statistical uncertainty

of n0 is correct if the Monte Carlo and data luminosities are the same. Both the criteria

of shape stability of the n distribution and the translational invariance of the systematic

errors under shifts of n0 are violated here. In this very special situation both of these

effects cancel in the evaluation of the systematic error.

6. Event weighting with systematic errors

In the preceding section systematic errors were included in the final results but the weight

function (2.9) was optimized with respect to the statistical errors only. If search channels

with very different systematic errors have to be combined or if many low weight background

events contribute to fractional counting, this is not the best way to analyze the data.

Instead, bins with large systematic errors should be downgraded in the analysis.

The procedure described in section 2.2 can be generalized to do this. Again the limiting

case of Gaussian distributions for the test statistic is considered here. The generalization

is given below for the criteria (i,ii),(iii) and (vi) of section 2.2.

The optimization criteria (i,ii) minimize the inverted ordering of the test statistic for

arbitrary data sets corresponding to hypotheses (A) and (B). The supplementary condi-

tion that the total weights X for the comparison are measured by independent, arbitrary

observers, has to be introduced.
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All optimization criteria are the same as in section 2.2 except that the systematic

errors are included in the variances σ2
sb and σ2

b . Their contributions are obtained with

equations (2.3) and (5.1):

σ2
sb =

∑

ki

w2
ki · (ski + bki) +

∑

j

(

∂ < X >sb

∂ζj

)2

=

=
∑

ki

w2
ki(ski + bki) +

∑

j

(

∑

ki

wki

(

σ
(s)
j,ki + σ

(b)
j,ki

)

)2

;

σ2
b =

∑

ki

w2
ki · bki +

∑

j

(

∂ < X >b

∂ζj

)2

=

=
∑

ki

w2
kibki +

∑

j

(

∑

ki

wkiσ
(b)
j,ki

)2

.

The optimization, performed in analogy to section 2.2, leads to

wki · (skik1 + bkik1 + bkik2) +
∑

lm

wlm ·
∑

j

(

σ
(s)
j,lm + σ

(b)
j,lm

)(

σ
(s)
j,ki + σ

(b)
j,ki

)

· k1 +

+
∑

lm

wlm ·
∑

j

σ
(b)
j,lmσ

(b)
j,ki · k2 = ski . (6.1)

The numerical factors k1 and k2 depend on the optimization criterion. One has k1 = k2 = 1

for conditions (i),(ii), k1 = 0 for (iii) and k2 = 0 for (vi). If the systematic errors are

set to zero, equations (6.1) reduce to (2.9). The double sums correct the weights (2.9)

for systematic errors, but they contain the final result wki so that the system of linear

equations (6.1) has to be solved for wki.

Negative values are possible for the weights. Mathematically there is nothing wrong

with this. The algorithm tries to extract information on the background from ξ bins with

low signal content and to extrapolate it into the most significant signal region to improve

the accuracy. However, when the approximation (5.2) is inserted into equation (6.1), the

errors on the shapes of the ξ distributions are ignored and the appearance of negative

weights is unacceptable. The problem can be cured if equations (6.1) are supplemented

by the requirement that negative wki should not be allowed. It can be shown that the

equations (6.1), together with these conditions, have a unique solution. This solution,

with a reduced number of contributing bins, gives an improved discrimination between

hypotheses (A) and (B) (see appendix A for a more detailed discussion).

This is illustrated in figure 13, which shows the expected upper rate limits for a Gaus-

sian signal, computed for a constant background. On the left hand side of figure 13, the

original weights (2.6) are compared with the result of (6.1). It turns out that the region

of accepted events around the signal peak is rather narrow if the systematic errors are

comparable to the statistical ones. The acceptance window depends on the background

level β, which is again the number of events in the ξ interval
√

2πσξ. The expected rate

limits (see figures on the right hand side) with the filter (6.1) (full lines) are lower than

the limits computed with (2.9) (dotted lines). It is also evident from the figure that the
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Figure 13: Expected upper rate limits E[n95] for a non-existing Gaussian signal over a constant

background. Left column: weight functions. Dashed curves: weighting based on statistical errors

only. Full curves: systematic errors included in the weights. The ordinate scale is arbitrary. Right

column: 95% limits as a function of the background level. The line styles indicate the weight

functions used in the analysis.

ordering of curves for the same weight functions is inverted if the systematic errors are not

included in the statistical analysis, this is a consequence of the bin dropping.

Results of similar quality can be obtained with (2.9), together with a cut on ski/bki.

This would, however, require the tuning of another parameter. Apart from the additional

degree of freedom, this procedure would contradict our motivation for introducing fractional

counting namely to avoid hard cuts in the event acceptance.
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The weighting method discussed here should be applied if the systematic errors, includ-

ing their correlations, have the same order of magnitude as the statistical errors or are even

larger. A relevant physical example is the flavor-independent search for Higgs bosons [29].

Compared to more specific Higgs searches, the background here is larger and the rela-

tive systematic uncertainties are similar. Measured upper limits have an error component

proportional to the background level so that systematic errors become important.

7. Confidence levels from the shapes of distributions

The methods presented in the preceding sections do not check at all whether the shapes of

the underlying distributions εki and bki are consistent with observation. A large value of of

the measured sum Xobs normally indicating a discovery might also be due to an excessive

number of background events. If the observed Xobs is close to unity, it is an interesting

question to what extent this result is due to the number of events or to the difference in

shape of the distributions s(ξ) and b(ξ).

A statistical test which does not compare the observed rate with a prediction but is

sensitive to the local signal-to-background ratios only is proposed. The probability for an

event, observed at ξki, to be a signal event, is given by

pki =
ski

ski + bki
. (7.1)

The predicted rates are taken from hypothesis (B). An arbitrary set of nobs events obeys the

polynomial distribution. From the observed candidates a likelihood L(shape) is calculated as

L(shape) =

nobs
∏

l=1

pk(l)i(l) .

A confidence level CL
(shape)
sb is then defined as the probability that an arbitrary experiment

with the same number of candidates gives at most the likelihood of the observed configu-

ration. The same analysis can be made using the definition (7.1) based on hypothesis (B)

but assuming that all events arise from background. The resulting confidence level is called

CL
(shape)
b . Values of CL

(shape)
sb or CL

(shape)
b between 0.16 and 0.84 indicate consistency with

the tested models, within one standard deviation. If CLb is close to unity but CL
(shape)
sb

is small a discovery is ruled out. Vice versa, a CL
(shape)
b value close to unity supports a

discovery. If both CL
(shape)
b and CL

(shape)
sb are consistent with the underlying hypotheses,

the test is not conclusive, either because the spectral shapes of signal and background are

too similar or because the overall signal-to-background-ratio is too small.

A computation of the confidence levels requires the distribution functions of L(shape).

The variable L(shape) can be replaced by its logarithm. The test corresponds then to

fractional counting of a fixed number of events with the weight

wki = ln
ski

ski + bki
. (7.2)

The folding procedure is the same as in section 2 with the exception that the lower weight

limit becomes negative. The algorithm has the same disadvantage as the likelihood ratio
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Figure 14: Confidence levels based on the polynomial distribution for a simple example. Upper

left: signal (dashed), background (dotted) and candidate distributions (histogram). Lower left: the

signal probabilities p(ξ). Upper right: confidence levels. The full and the dash-dotted curves are

for the ’data’, the smooth curves are median expectations (see text). The analysis hypothesis is

background for the upper curves, signal and background for the lower curves. Lower right: number

of events with p(ξ) ≥ pcut.

method namely a singularity, this time at ski=0. To avoid numerical problems, pki is

required to exceed a minimum value. A continuous upward shift of this cut pcut removes

one candidate after the other from the sample, until the results are not anymore conclusive.

The values of CL
(shape)
b and CL

(shape)
sb jump at the discontinuities.

As a simple example, figure 14a shows a Gaussian signal peak, a linearly rising back-
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ground and a pattern of candidate events. The mean values are 100 (background) and 20

(signal), and the resolution is 15 bins. Compared to the background model, the sample

contains an excess of events (130). The example experiment is analyzed at the hypothetical

signal position. The normal analysis of section 4.2 gives confidence levels CLb = 0.993 and

CLsb = 0.45, which would be a weak indication for a signal consistent with the assumed

signal rate. Figure 14c shows the confidence levels CL
(shape)
b and CL

(shape)
sb as a function of

pcut. The smooth curves are two theoretical predictions: background events are analyzed

in terms of signal plus background (lower curve) and signal plus background events are

investigated assuming all events are background (upper curve). The number of accepted

events as a function of pcut is given, too. The falling sensitivity with decreasing number of

events is obvious from the pictures.

In the sensitive region pcut < 0.05 there is a slight preference for a background in-

terpretation, but the results are not very stable if pcut is varied. This raises the question

whether an analysis of this type can be performed without a cut on the weights. This is

indeed possible by applying the procedure described in section 2.2. The variances of the ξ

distributions for hypotheses (A) and (B) for one event are

σ2
b =

∑

ki

(

wki −
∑

lj bljwlj
∑

lj blj)

)2

· bki
∑

lj blj
(7.3)

σ2
sb =

∑

ki

(

wki −
∑

lj(slj + blj) · wlj
∑

lj(slj + blj

)2

· ski + bki
∑

lj(slj + blj)
(7.4)

A possible normalization of wki is

∑

ki

(ski + bki) · wki
∑

lj(slj + blj)
−

∑

ki

bki · wki
∑

lj blj
= const. (7.5)

In these equations the absolute normalization of the Monte Carlo rates ski and bki cancels.

Instead of the total signal rate r the relevant parameter for the analysis is the overall

signal-to-background ratio

ρ =

∑

ki ski
∑

ki(ski + bki)
, (7.6)

computed with hypothesis (B). The optimization criteria are the same as in section 2.2.

Again the confidence levels are invariant if the weights are multiplied with a constant factor.

In addition, an arbitrary constant may be added to the weights since the total number of

events is fixed to nobs. Criteria (i) and (ii) then lead, with the modified constraint (7.5)

and a final fixing of the arbitrary constants, to the weight definition

wki = N (1 − ρ) · ski − ρ · bki

(1 − ρ) · ski + (2 − ρ) · bki
. (7.7)

If the local signal-to-background-ratio is equal to the global one, ski/bki = ρ/(1 − ρ), one

obtains wki = 0. Events in bins with a larger signal-to-background-ratio are considered

as more signal like with positive weight. If ρ ¿ 1 but locally ski ≈ bki, equation (7.7)
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approaches equation (2.6). If ρ ≈ 1 but locally ski ≈ bki, maximal background counting

with a limiting weight wki = −N is reached.

If equation (7.7) is used instead of (7.2) for the example analyzed above, one gets

CL
(shape)
sb = 0.09 for a signal plus background interpretation of the data set, to be compared

with a median expectation E[CL
(shape)
sb ]b = 0.04 from background events. The result for the

background hypothesis is CL
(shape)
b = 0.67 for the data set, close to the median background

value E[CL
(shape)
b ]b = 0.5, while E[CL

(shape)
b ]sb = 0.96 is expected from background and

signal events. These results do not support the existence of a signal. In this case the

background was probably underestimated.

This test on CL
(shape)
b and CL

(shape)
sb has, of course, less discrimination power than the

analysis based on CLb and CLsb, but it is an important cross check if an indication for a

signal is found.

The systematic errors can be studied as described in section 5 with the exception that

the approximation (5.2) is not applicable. The full errors matrices σ
(s)
j,ki and σ

(b)
j,ki have to

be known.

8. Summary

The method of fractional event counting for extracting confidence levels is presented, based

on a weighted sum over the observed events as the test statistic. A simple weight func-

tion (2.9), depending on a discriminating variable ξ, is derived. It contains one free param-

eter R, proportional to the signal rate, whose choice depends on the statistical question

to be answered. Several criteria for its optimization are discussed. If a theoretical signal

rate r is known, meaningful R values range from 0 to r. When upper limits have to be

computed, R should be chosen so as to give the best upper bounds expected from the

background hypothesis. With a value R = r/2, fractional event counting is very similar to

the likelihood ratio method and the results are almost identical, as long as the signal-to-

background-ratio is not larger than 1. In the presence of very low background bins, the

weight function presented here has the advantage that it avoids singularities in the test

statistic. Correlated systematic errors are included in the computation of confidence levels,

using a fast numerical procedure.

The Bayesian and the frequentist treatments of systematic errors are compared. Both

approaches agree, for a fixed weight function, if systematic errors introduce shifts of the

distributions of the test statistic without modification of its shape, and if the systematic

errors are invariant against translations of the distribution of test statistic. The signal

and background distributions of the discriminating variable may be arbitrary continuous

functions and the distribution of the systematic errors may also be arbitrary.

It is shown how systematic errors can be incorporated into the weight definition. The

algorithm presented drops insignificant bins and improves, at the same time, the discovery

potential for a signal.

An observed excess of the test statistic over the background level may either be caused

by an excessive number of events or by different shapes of the distributions of the dis-

criminating variable ξ for data and background. An analysis is presented which extracts
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confidence levels for a given signal-to-background-ratio from a comparison of the predicted

shapes of the ξ distributions for background and a hypothetical signal with experiment.

It relies on the polynomial distribution and fixes the total theoretical number of events to

the observation. Singularities in the test statistic can be avoided. If there is an indication

for a signal, this additional test is a valuable, supplementary consistency check.

The problem of low rate experiments is investigated. It is already known that upper

limits from analyses with discriminating variables are rather ambiguous since they depend

on the choice of the weight algorithm and its parameters. To avoid subjectivity, it is

proposed to use simply the signal-to-background ratio as the weight. The reliability of the

computation of systematic errors was checked. It turns out that, for a low rate experiment

with a large systematic uncertainty of the background, the probability for an upward

fluctuation is always underestimated with the Bayesian treatment of the background error.
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A. Optimal weights depending on systematic errors

In the following it is shown why the solution of equations (6.1) is unique and the sensitivity

of the analysis is always improved. Let N be the total number of histogram bins. The

normalization condition Xs =
∑

ki wkiski=const. defines a (N −1)-dimensional hyperplane

in the space of weights wki. The N inequalities wki ≥ 0 define an (N − 1) hyper-planar

object with N corners within this hyperplane, a so called simplex. The simplest examples

are a connection line for N = 2, a triangle for N = 3 and a tetrahedron for N = 4. At the

corners, only one of the wki is positive. The surface of the simplex consists of N hyper-

planar objects of dimension (N −2), which are simplices again. The simplest examples are

the end points of the connection line for N = 2, the sites of the triangle for N = 3 and the

surface triangles of the tetrahedron for N = 4. These surface elements are characterized

by one vanishing wki. Two of the (N − 2)-dimensional surface elements have one (N − 3)-

dimensional simplex in common. There are N · (N − 1)/2 of these objects, on which two

weights vanish. This decomposition can be repeated until one reaches the corners. All

curvature components on these substructures vanish.

The condition σ2/(
∑

ki wkiski)
2 = p defines an N -dimensional hyper-ellipsoid, whose

size depends on the constant p. For sufficiently small values of p all points of the simplex

wki ≥ 0 lie outside the hyper-ellipsoid. Because both the error ellipsoid and the simplex

are convex and all curvature components of the ellipsoid are non-zero, there exists exactly
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one value of p for which the simplex becomes a tangential object of the hyper-ellipsoid.

The coordinates of the tangential point are the desired weights. The point computed

with (2.9) lies in the interior of the N − 1-dimensional simplex. In general, the error

ellipsoid containing it has a larger value of p than the solution of equation (6.1).

B. Comments on the comparison of two arbitrary hypotheses

In physical models changes of the parameters often induce local changes of rates with

different signs. A simple example is the comparison of two angular correlations. In the

following it is summarized how the weighting has to be modified to discriminate between

two arbitrary models (A) and (B). Let aki and bki be the local rates. The previous results

are reproduced with aki = bki + ski. The weight optimization can be repeated with the

normalization
∑

wki · (aki − bki) =const., with the result

wki =
N · U · (aki − bki)

U · aki + (1 − U) · bki

where a free parameter U replaces R. To guarantee a positive denominator, U should be

constrained to 0 ≤ U ≤ 1. The weights can now become negative, but they have a lower

and an upper bound. The folding procedures to get the distributions of the test statistic

are the same, but X lies now in the interval −∞ to ∞ and the lower integration limit in

the confidence level integrals has to be set to a sufficiently large negative number.

The weighting with systematic errors leads to the system of linear equations

wki · (aki · k1 + bki · k2) +
∑

lm

wlm ·
∑

j

σ
(a)
j,lmσ

(a)
j,ki · k1 +

+
∑

lm

wlm ·
∑

j

σ
(b)
j,lmσ

(b)
j,ki · k2 = aki − bki

The numerical factors k1, k2 are defined as before. The requirement of positive weights

is meaningless. It was introduced to circumvent bad knowledge of the spectral shapes of

systematic errors in regions where the difference between the models is small. Here, bins

with aki ≈ bki are not significant, and they can be dropped with the requirement that wki

must have the same sign as aki − bki.

For the statistical test, based on the shapes of the distributions, equation (7.7) has to

be replaced by

wki = N · aki/
∑

ki aki − bki/
∑

ki bki

aki/
∑

ki aki + bki/
∑

ki bki

This formula is symmetric and has no singularities. An example for its application is the

above mentioned angular distribution check.
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